วันพุธที่ 2 ธันวาคม พ.ศ. 2552

การอ่านค่าความต้านทาน

การอ่านค่าความต้านทาน


การอ่านค่าความต้นทานนั้นอ่านตามหน่วยของความต้านทาน ( Unit of Resistance) โดยอ่านตามค่าความต้านทานที่แสดงไว้บนตัวเลขและตัวอักษรรวมกัน แบ่งการแสดงค่าออกเป็น 2 แบบ คือแบบแสดงค่าความต้านทานโดยตรงและแบบแสดงค่าความต้านทานเป็นรหัส ซึ่งอาจเป็นรหัสสีของตัวต้านทานแต่ละวิธีการอ่านมีดังนี้
การอ่านค่ารหัสสีของตัวต้านทาน
การอ่านค่ารหัสสีของตัวต้านทานมีอยู่ 2 วิธี คือ

วิธีที่ 1
อ่านจากค่าพิมพ์ที่ติดไว้บนตัวต้านทาน โดยจะบอกเป็นค่าความต้านทาน ค่าเปอร์เซ็นต์ความผิดพลาด และอัตราทดกำลังไฟฟ้า ซึ่งส่วนมาจะเป็นตัวต้านทานที่มีขนาดใหญ่ เช่นตัวต้านทานแบบไวร์วาวด์ ตัวต้านทานชนิดเปลี่ยนแปรค่าได้ชนิดต่าง ๆ เป็นต้น
วิธีที่ 2
อ่านจากค่ารหัสสีของตัวต้านทาน (Resistor Colour Code)ซึ่งส่วนมากจะเป็นตัวต้านทานคาร์บอน ฟิล์มคาร์บอน ฟิล์มโลหะ และแบบไวร์วาวด์ที่มีขนาดเล็ก

สำหรับการอ่านค่าความต้านทานที่เป็นรหัสสี จะแบ่งลักษณะการอ่านได้เป็น 2 แบบคือ
1. ระบบตัวหัวจุก (Body – End – Dot System) คือตัวต้านทานที่มีการต่อขาใช้งานในแนวรัศมี
หรือทาด้านข้างของตัวต้านทาน
2. ระบบหัวถึงปลาย (End – To – Center Band System) คือ ตัวต้านทานที่มีลักษณะการต่อขาใช้งานตามความยาวของตัวต้านทาน
ตาราง ค่ารหัสสีตัวต้านทาน



1. การอ่านรหัสสีตัวต้านทานระบบตัวหัวจุด
ตัวต้านทานชนิดนี้ตัวมันจะมีสีเดียวกันตลอด และมีการแต้มสีไว้บนที่ด้านหัวและตรงกลาง ซึ่งอาจจะทำเป็นจุดสีหรือทาสีไว้โดยรอบตัวต้านทาน





รูปแสดง วิธีการอ่านรหัสสีตัวต้านทานระบบตัวหัวจุด


วิธีการอ่านรหัสสีตัวต้านทานระบบตัวหัวจุด ให้ปฏิบัติตามขั้นตอนต่อไปนี้
1.พิจารณาสีพื้นของตัวต้านทานจะเป็นแถบสีที่ 1 (ตัวเลขที่ 1 )
2.สีแต้มที่ปลายด้านหัวที่ไม่ใช่สีน้ำเงินและสีทอง จะเป็นแถบสีที่ 2 (ตัวเลขที่ 2 )
3.สีแต้มหรือจุดสีที่อยู่ตรงกลางตัวต้านทานจะเป็นแถบสีที่ 3 (ตัวคูณ)
4.สีที่ปลายด้านท้ายที่เป็นสีเงิน สีทองหรือไม่มีสี จะเป็นแถบสีที่ 4 ( +_ % ค่าผิดพลาด)ในการการอ่านรหัสสีตัวต้านทานระบบตัวหัวจุด จะมีทั้งแบบ 3 หรือ 4 แถบสี ซึ่งจะมีวิธีการอ่านที่เหมือนกัน และใช้ค่ารหัสสีตัวต้านทานในตารางที่ 1

2. การอ่านรหัสสีของตัวต้านทานระบบหัวถึงปลาย
ตัวต้านทานบางแบบนิยมแสดงค่าความต้านทานไว้เป็นแถบสีโดยใช้สีที่เป็นมาตรฐานกำหนดแทนตัวเลขซึ่งแทนทั้งค่าความต้านทานและค่าความผิดพลาด แถบสีที่ใช้แบ่งได้เป็น 2 แบบ คือ แบบ 4 แถบสี และแบบ 5 แถบสี
การอ่านค่าแถบสีเป็นค่าความต้านทานและค่าผิดพลาด ต้องเปลี่ยนแถบสีที่ทำกำกับไว้เป็นตัวเลขทั้งหมด แทนค่าตัวเลขให้ถูกต้องตามค่าตัวตั้ง ค่าตัวคูณ และค่าผิดพลาด ตามมาตรฐานที่กำหนด จะได้ค่าความต้านทานและค่าผิดพลาดของตัวต้านทานตัวนั้นออกมา
แบบ 4 แถบสี
ตัวต้านทานแบบ 4 แถบสี มีแถบสีแสดงบนตัวต้านทาน 4 แถบ การอ่านค่า ให้อ่านแถบสีที่อยู่ใกล้ขาตัวต้านทานมากที่สุดเป็นแถบสีที่ 1 แถบสีต่อมาเป็นแถบสีที่ 2 ทั้ง 2 แถบสีแทนค่าเป็นตัวเลขแล้วอ่านได้โดยตรง ส่วนแถบสีต่อมาเป็นแถบสีที่ 3 เป็นแถบสีตัวคูณหรือจำนวนเลขศูนย์ (0) ที่ต้องเติมเข้าไป และแถบสีต่อมาเป็นแถบสีที่ 4 เป็นแถบสีแสดงค่าผิดพลาด แสดงดังตาราง ค่ารหัสสีตัวต้านทาน



ตัวอย่างที่1





ตัวอย่างที่ 2


แบบ 5 แถบสี
ตัวต้านทานแบบ 5 แถบสีจะมีแถบสีแสดงบนตัวต้านทาน 5 แถบ การอ่านค่า ให้อ่านแถบสีที่อยู่ใกล้ตัวต้านทานมากที่สุดเป็นแถบสีที่ 1 เรียงลำดับเข้ามาเป็นแถบสีที่ 2 และแถบสีที่ 3 ทั้ง 3 แถบสิ่งที่เป็นตัวเลขสามารถอ่านค่าได้โดยตรง ส่วนแถบสีที่ 4 เป็นตัวคูณหรือจำนวนเลขศูนย์ (0) ที่ต้องเติมเข้าไป และแถบสีที่ 5 เป็นค่าผิดพลาด แสดงดังตารางที่ 2

ตารางตัวอย่างแสดงค่าความต้านทาน 5 แถบสี

























วันพุธที่ 18 พฤศจิกายน พ.ศ. 2552

โรงไฟฟ้าพลังความร้อน

ลักษณะการทำงาน

เป็นโรงไฟฟ้าที่ใช้เครื่องกังหันไอน้ำเป็นเครื่องต้นกำลังหมุนเครื่องกำเนิดไฟฟ้าไอน้ำที่มีความดันและอุณหภูมิสูงนี้ได้จากการเปลี่ยนสถานะ
ของน้ำในหม้อน้ำ เมื่อได้รับพลังความร้อนจากการเผาไหม้ของเชื้อเพลิงในเตาเผา ( Furnace) ไอน้ำจะถูกส่งไปขับดันกังหันไอน้ำ ซึ่งมีเพลาต่อกับเครื่องกำเนิดไฟฟ้า หลังจากนั้นก็จะผ่านไปกลั่นตัวเป็นน้ำที่เครื่องควบแน่น (Condenser) และถูกส่งกลับมารับความ
ร้อนใหม่ในหม้อน้ำ เนื่องจากไม่สามารถเปลี่ยนสถานะของน้ำให้เป็นไอได้อย่างรวดเร็ว เมื่อเริ่มเดินเครื่องแต่ละครั้ง จนใช้งานได้
จะใช้เวลาอย่างน้อยประมาณ 2 – 3 ชั่วโมง ดังนั้น จึงเหมาะที่จะใช้เป็นโรงไฟฟ้าฐาน (Base Load Plant) ซึ่งทำหน้าที่ผลิตพลังงาน
ไฟฟ้าตลอดเวลา เป็นระยะเวลานานก่อนการหยุดเครื่องแต่ละครั้ง โดยทั่วไปโรงไฟฟ้าพลังไอน้ำมีขนาดประมาณ 1 – 1,300 เมกะวัตต์ สามารถใช้เชื้อเพลิงได้หลายชนิด เช่น ถ่านหิน น้ำมันเตา ก๊าซธรรมชาติ ขยะ ฯลฯ และมีประสิทธิภาพประมาณ 30 – 35 % และมีอายุการ
ใช้งานประมาณ 25 ปี

ส่วนประกอบที่สำคัญ

หม้อน้ำ (Boiler) เป็นอุปกรณ์ที่ทำหน้าที่เปลี่ยนพลังงานจากเชื้อเพลิงชนิดต่างๆให้เป้นพลังงานความร้อนในรูปของไอน้ำที่มีความดัน
และอุณหภูมิสูง หม้อน้ำมีลักษณะแตกต่างกันไปตามการใช้งาน เช่น Fire – Tube Boiler เป็นหม้อน้ำขนาดเล็ก ๆ ใช้ผลิตไอน้ำ
ที่มีความดันและอุณหภูมิไม่สูงมาก Water – Tube Boiler เป็นหม้อน้ำขนาดใหญ่ใช้ผลิตไอน้ำที่มีความดันและอุณหภูมิสูง
โดยทั่วไปมีอยู่ 2 แบบ คือ แบบ DRUM ซึ่งสามารถผลิตไอน้ำได้ที่ความดันสูงถึง 177 ความดันบรรยากาศ (179 Bar) และแบบ
Once - Through ซึ่งสามารถผลิตไอน้ำได้ทั้งที่ความดันต่ำและสูงกว่าความดันวิกฤติของน้ำ (Critical Pressure ) คือ 218
ความดันบรรยากาศ ( 220.5 Bar )

หม้อน้ำมีระบบที่สำคัญ คือระบบเชื้อเพลิง ระบบการเผาไหม้ Evaporator Drumหรือ Separater Superheater ,
Economizer, Air Heater, Fan และอุปกรณ์ประกอบ


กังหันไอน้ำ (Steam Turbine) มีขนาดต่างๆตั้งแต่ขนาดเล็ก (เล็กกว่า 1 เมกะวัตต์) แบบ Single – Cylinder ,
Non – Reheat Type จนถึงขนาดใหญ่ (ใหญ่กว่า 1,000 เมกะวัตต์) แบบ Multi - Cylinder Reheat Type


กังหันไอน้ำมีส่วนประกอบที่สำคัญ คือ Control Valve, Stop Valve, Stator Blade, Rotor Blade, Casing and Rotor พร้อมอุปกรณ์ประกอบที่จำเป็นอื่นๆ เช่น Feed – Water Heating Plant, Pump และความควบแน่น (Condenser) เป็นต้น


แหล่งอ้างอิง
โรงงานไฟฟ้าพลังความร้อน.(ออนไลน์).เข้าถึงได้จาก:http://prinfo.egat.co.th/steam_power_plant.html

โรงไฟฟ้านิวเคลียร์

โรงไฟฟ้านิวเคลียร์คืออะไร


“โรงไฟฟ้านิวเคลียร์” คือ โรงงานผลิต กระแสไฟฟ้าที่ใช้พลังงานความร้อนจากปฏิกิริยาแตกตัวทางนิวเคลียร์ (nuclear fission reaction) ทำให้น้ำกลายเป็นไอน้ำที่มีแรงดันสูง แล้วส่งไอน้ำไปหมุนกังหันไอน้ำ ซึ่งต่อกับเครื่องกำเนิดไฟฟ้า เพื่อผลิตไฟฟ้า และส่งต่อไปยังผู้บริโภคต่อไป
โรงไฟฟ้านิวเคลียร์มีหลักการผลิตไฟฟ้าคล้ายกับโรงไฟฟ้าพลังความร้อนทั่วไป กล่าวคือ จะใช้พลังงานความร้อนไปผลิตไอน้ำ แล้วส่งไอน้ำไปหมุนกังหันไอน้ำและ เครื่องกำเนิดไฟฟ้า เพื่อผลิตกระแสไฟฟ้า ออกมา แต่มีข้อแตกต่างกันคือ ต้นกำเนิดพลังงานความร้อนของโรงไฟฟ้านิวเคลียร์เกิดจากปฏิกิริยาแตกตัวของยูเรเนียม-๒๓๕ ในเชื้อเพลิงนิวเคลียร์ ส่วนความร้อนจากโรงไฟฟ้าพลังความร้อนทั่วไปนั้นได้จากการเผาไหม้ของเชื้อเพลิง ซึ่งได้แก่ ถ่านหินหรือลิกไนต์ ก๊าซธรรมชาติหรือน้ำมัน เมื่อเปรียบเทียบปริมาณเชื้อเพลิงที่ใช้สำหรับการ ผลิตไฟฟ้า พบว่า หากใช้ยูเรเนียมธรรมชาติ (ความเข้มข้นของยูเรเนียม-๒๓๕ ประมาณร้อยละ ๐.๗) จำนวน ๑ ตัน จะสามารถผลิตไฟฟ้าได้มากกว่า ๔๐ ล้านกิโลวัตต์/ชั่วโมง ในขณะที่ต้องใช้ถ่านหินถึง ๑๖,๐๐๐ ตัน หรือใช้น้ำมันถึง ๘๐,๐๐๐ บาร์เรล (ประมาณ ๑๓ ล้านลิตร) จึงจะผลิตไฟฟ้าได้เท่ากัน
การนำพลังงานนิวเคลียร์มาใช้เพื่อผลิต ไฟฟ้า เป็นความสำเร็จทางวิทยาศาสตร์ที่เกิดขึ้นในช่วงเวลาประมาณ ๕๐ ปีที่ผ่านมานี้เอง โดยใน พ.ศ. ๒๔๙๔ ได้มีการทดลอง เดินเครื่องปฏิกรณ์เพื่อผลิตกระแสไฟฟ้าเป็นครั้งแรกของโลกขึ้นที่สถานีทดลองพลังงานไอดาโฮ เพื่อจ่ายกระแสไฟฟ้าให้แก่ เมืองอาร์โค มลรัฐไอดาโฮ ประเทศสหรัฐอเมริกา
การก่อสร้างโรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูงในเชิงพาณิชย์ขนาด ๗๕ เมกะวัตต์ ได้เริ่มขึ้นที่ชิปปิงพอร์ต มลรัฐเพนซิลเวเนีย ประเทศสหรัฐอเมริกา ใน พ.ศ. ๒๔๙๗ และได้จ่ายกระแสไฟฟ้าให้แก่เมืองพิตต์สเบิร์ก ใน พ.ศ. ๒๕๐๐
ต่อมาใน พ.ศ. ๒๕๐๒ โรงไฟฟ้านิวเคลียร์เดรสเดน (แบบปฏิกรณ์น้ำเดือด) ได้เดินเครื่องจ่ายกระแสไฟฟ้าให้แก่เมืองมอร์ริส มลรัฐอิลลินอยส์ หลังจากนั้น การก่อสร้างโรงไฟฟ้านิวเคลียร์ทั้ง ๒ แบบได้ขยายตัวขึ้น และแพร่หลายไปยังประเทศอื่นๆ รวมทั้งการพัฒนาเทคโนโลยีโรงไฟฟ้า นิวเคลียร์ให้มีขนาดใหญ่ขึ้นกว่า ๑,๐๐๐ เมกะวัตต์ และมีความปลอดภัยยิ่งขึ้น


โรงไฟฟ้านิวเคลียร์มี่ส่วนประกอบที่สำคัญอะไรบ้าง

โรงไฟฟ้านิวเคลียร์มีส่วนประกอบที่สำคัญ คือ
๑) อาคารปฏิกรณ์ ประกอบด้วย เครื่องปฏิกรณ์ เครื่องผลิตไอน้ำ เครื่องควบคุมความดัน ปั๊มน้ำระบายความร้อน อุปกรณ์อื่นๆ เช่น วัสดุกำบังรังสี ระบบควบคุมการเดินเครื่อง และระบบความปลอดภัยต่างๆ
๒) อาคารเสริมระบบปฏิกรณ์ ประกอบด้วย เครื่องมืออุปกรณ์สำหรับการเดินเครื่องปฏิกรณ์ อุปกรณ์ความปลอดภัย บ่อเก็บเชื้อเพลิงใช้แล้ว
๓) อาคารกังหันไอน้ำ ประกอบด้วย ชุดกังหันไอน้ำ เครื่องกำเนิดไฟฟ้าและอุปกรณ์ประกอบ
๔) สถานีไฟฟ้าแรงสูง ประกอบด้วย ระบบสายส่งไฟฟ้าแรงสูงและอุปกรณ์ประกอบ
๕) อาคารฝึกหัดเดินเครื่องโรงไฟฟ้า ประกอบด้วย แบบจำลองสำหรับฝึกหัดเดินเครื่องโรงไฟฟ้า ทั้งสภาวะปกติและฉุกเฉิน
๖) อาคารระบบคอมพิวเตอร์ ประกอบด้วย ระบบอุปกรณ์/ข้อมูลสำหรับ การเดินเครื่องโรงไฟฟ้า
๗) หม้อแปลงไฟฟ้า ประกอบด้วย หม้อแปลงไฟฟ้าหลัก และหม้อแปลงไฟฟ้าสำรองสำหรับการเดินเครื่อง
๘) อาคารอำนวยการ ประกอบด้วย สำนักงาน ห้องทำงานต่างๆ ห้องประชุม
๙) อาคารสำนักงานและฝึกอบรม ประกอบด้วย ห้องทำงาน ห้องฝึกอบรม ห้องประชุม ห้องปฏิบัติการทางเคมี ห้องอาหาร
๑๐) อาคารรักษาความปลอดภัย เป็นอาคารทางเข้าบริเวณโรงไฟฟ้า ประกอบด้วย เจ้าหน้าที่และอุปกรณ์เครื่องมือของระบบรักษาความปลอดภัยต่างๆ
๑๑) อาคารโรงสูบน้ำ เป็นอาคารที่สูบน้ำจากแหล่งน้ำธรรมชาติภายนอก เพื่อนำมาควบแน่นไอน้ำในระบบผลิตไอน้ำ ประกอบด้วย ชุดปั๊มน้ำ และอุปกรณ์ประกอบต่างๆ
๑๒) ส่วนประกอบอื่นๆ ได้แก่ ระบบสายส่งไฟฟ้าแรงสูง และหอระบายความร้อน (ถ้าไม่มีแหล่งน้ำธรรมชาติขนาดใหญ่)

หลักการทำงาน

โรงไฟฟ้านิวเคลียร์แบ่งการทำงานออก เป็น ๒ ส่วนใหญ่ๆ คือ


๑) ส่วนผลิตความร้อน ได้แก่ เครื่องปฏิกรณ์นิวเคลียร์ ระบบน้ำระบายความร้อน และเครื่องผลิตไอน้ำ
๒) ส่วนผลิตกระแสไฟฟ้า ประกอบด้วย กังหันไอน้ำ และเครื่องกำเนิดไฟฟ้า โดยส่วนผลิตความร้อนจะส่งผ่านความร้อนให้กระบวนการผลิตไอน้ำ เพื่อนำไปใช้ผลิต ไฟฟ้าต่อไป
พิจารณาจากหลักการทำงาน อาจแบ่งโรงไฟฟ้านิวเคลียร์ออกได้เป็น ๓ แบบดังนี้
๑. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูง (Pressurized Water Reactor : PWR)
โรงไฟฟ้านิวเคลียร์แบบ PWR มีหลักการทำงานคือ เมื่อเครื่องปฏิกรณ์ทำงาน จะเกิดปฏิกิริยาแตกตัวกับเชื้อเพลิงนิวเคลียร์ ทำให้เกิดความร้อน กัมมันตรังสี และผลิตผล จากการแตกตัว (fission product) หรือกาก เชื้อเพลิง โดยความร้อนจากเชื้อเพลิงจะถ่ายเทให้แก่น้ำระบายความร้อนวงจรที่ ๑ ซึ่งไหลเวียนตลอดเวลาด้วยปั๊มน้ำ โดยมีเครื่องควบคุมความดันคอยควบคุมความดันภายในระบบให้สูงและคงที่ ส่วนน้ำที่รับความร้อนจากเชื้อเพลิงจะไหลไปยังเครื่องผลิตไอน้ำ และถ่ายเทความร้อนให้ระบบน้ำวงจรที่ ๒ ซึ่งแยกเป็นอิสระจากกัน ทำให้น้ำเดือดกลายเป็นไอน้ำแรงดันสูง และถูกส่งผ่านไปหมุนกังหันไอน้ำ และเครื่องกำเนิด ไฟฟ้าซึ่งต่ออยู่กับกังหันไอน้ำ เมื่อเครื่องกำเนิดไฟฟ้าหมุน จะเกิดกระแสไฟฟ้าที่สามารถนำไปใช้งานได้ต่อไป ไอน้ำแรงดันสูงที่หมุนกังหันไอน้ำแล้ว จะมีแรงดันลดลง และถูกส่งผ่านมาที่เครื่องควบแน่นไอน้ำ เมื่อไอน้ำได้รับความเย็นจากวงจรน้ำเย็นจะกลั่นตัวเป็นน้ำและส่งกลับไปยังเครื่องผลิตไอน้ำด้วยปั๊มน้ำ เพื่อรับความร้อนจากระบบน้ำวงจรที่ ๑ วนเวียนเช่นนี้ตลอดการเดินเครื่องปฏิกรณ์
๒. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำเดือด (Boiling Water Reactor : BWR)
โรงไฟฟ้านิวเคลียร์แบบ BWR มีหลัก การทำงานคล้ายโรงไฟฟ้านิวเคลียร์แบบ PWR แต่มีข้อแตกต่างกันที่ส่วนผลิตความร้อน เพราะความร้อนจากเชื้อเพลิงที่ถ่ายเทให้แก่วงจรน้ำระบายความร้อน จะทำให้น้ำเดือดกลายเป็นไอน้ำไปหมุนกังหันไอน้ำโดยตรง โดยไม่มีระบบน้ำวงจรที่ ๒ มารับความร้อน เหมือนแบบ PWR
๓. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำมวลหนัก (Pressurized Heavy Water Reactor : PHWR)
โรงไฟฟ้านิวเคลียร์แบบ PHWR หรือมีชื่อทางการค้าว่า แคนดู (CANDU : CANada Deuterium Uranium) มีหลักการทำงานเหมือนโรงไฟฟ้าแบบ PWR แต่แตกต่างกันที่เครื่องปฏิกรณ์จะวางในแนวนอน ใช้ยูเรเนียมธรรมชาติเป็นเชื้อเพลิง และใช้น้ำมวลหนัก (Heavy water : D2O) เป็นสาร ระบายความร้อนและสารหน่วงนิวตรอน
แหล่งอ้างอิง
โรงไฟฟ้านิวเคลียร์.(ออนไลน์).เข้าถึงได้จาก:http://kanchanapisek.or.th/kp6/BOOK28/chapter7/chap7.htm

วันศุกร์ที่ 4 กันยายน พ.ศ. 2552

รายชื่อบล็อคของเพื่อน

เบน
ปาล์ม
เปรม
อั้ม
อาร์ม
คิว
กอล์ฟ
ครามมี่
บีบี
นิดหนึ่ง
ยุ้มยิ้ม
เม็ดทราย
ปายลาย
ตุ๊กตา
จุ๊บแจง
เรนนี่
แป๊ปซี่
นัดดา
ต่ายจัง
ฟ้าใส
แอมมี่
ต้อยติ่ง
นัซซี่
เนสซี่
เลนส์เว้า (concave lens) คือ เลนส์ที่มีผิวโค้งเข้าด้านใน มีขอบหนา และตรงกลางบาง แสงที่ผ่านเลนส์เว้าจะกระจายออก เลนส์เว้านำมาใช้ในกล้องโทรทรรศน์, กล้องจุลทรรศน์ และแว่นตา สำหรับในแว่นตานั้น เลนส์เว้าช่วยปรับสายตาสำหรับคนสายตาสั้นได้ เลนส์เว้าสามารถสร้างภาพเสมือนได้
เลนส์เว้า สามารถแบ่งออกได้เป็น 3 ประเภทคือ
เลนส์เว้า 2 ด้าน
เลนส์เว้าแกมนูน
เลนส์เว้าแกมระนาบ

วันจันทร์ที่ 17 สิงหาคม พ.ศ. 2552

คุณสมบัติของแสง



คุณสมบัติของแสง

แสงจะมีคุณสมบัติที่สำคัญ 4 ข้อ ได้แก่ การเดินทางเป็นเส้นตรง (Rectilinear propagation) , การหักเห (Refraction) , การสะท้อน (Reflection) และการกระจาย (Dispersion)

การเดินทางแสงเป็นเส้นตรง
ในตัวกลางที่มีค่าดัชนีการหักเห (refractive index ; n) ของแสงเท่ากัน แสงจะเดินทางเป็นเส้นตรงโดยค่า n สามารถหาได้จากสมการ 2.1
(2.1)
โดยที่ คือ ความเร็วของแสงในสูญญากาศ
คือ ความเร็วของแสงในตัวกลางนั้นๆ








รูปที่ 2.1 ช่วงแถบความถี่แม่เหล็กไฟฟ้าที่ใช้ในการสื่อสารเส้นใยแสง
การสะท้อน



การสะท้อนของแสงสามารถแบ่งออกได้เป็น 2 ลักษณะ คือ
» การสะท้อนแบบปกติ (Regular reflection) จะเกิดขึ้นเมื่อแสงตกกระทบกับวัตถุที่มีผิวเรียบมันวาวดังรูปที่ 2.2

รูปที่ 2.2 การสะท้อนแบบปกติ


» การสะท้อนแบบกระจาย (Diffuse reflection) จะเกิดขึ้นเมื่อแสงตกกระทบวัตถุที่มีผิวขรุขระดังรูปที่ 2.3

รูปที่ 2.3 การสะท้อนแบบกระจาย


โดยการสะท้อนของแสงไม่ว่าจะเป็นแบบใดก็ตามจะต้องเป็นไปตามกฎการสะท้อนของแสงที่ว่า "มุมสะท้อนเท่ากับมุมตกกระทบ"


การหักเห
การหักเหของแสงจะเกิดขึ้นเมื่อแสงเดินทางผ่านตัวกลางที่มีค่าดัชนีการหักเหไม่เท่ากัน โดยลำแสงที่ตกกระทบจะต้องไม่ทำมุมฉากกับรอยต่อระหว่างตัวกลางทั้งสอง และมุมตกกระทบต้องมีค่าไม่เกินมุมวิกฤต (Critical angel ; ) โดยการหักเหของแสงสามารถแบ่งออกได้เป็น 3 กรณี คือ





จากรูปที่ 2.5 ระยะเวลาที่แสงใช้ในการเดินทางในช่วง BC จะเท่ากับระยะเวลาที่แสงใช้ในการเดินทางในช่วง B'C' ซึ่งสามารถเขียนเป็นสมการได้ดังสมการ 2.2 (2.2)

จากสมการ (2.2) จะได้ (2.3)


เมื่อพิจารณารูปสามเหลี่ยม BCC' และ BB'C' จะได้ความสัมพันธ์ทางตรีโกณดังนี้ (2.4)

และ
(2.5)


นำสมการ (2.4) และ (2.5) แทนลงไปในสมการ (2.3) จะได้


(Snell's Law) » n1 > n2 แสงจะหักเหออกจากเส้นปกติ

รูปที่ 2.6 การหักเหของแสงกรณี n1 > n2

จากรูปที่ 2.6 จะเห็นว่าระยะทาง BC มีค่ามากกว่า B'C' เนื่องจากระยะทาง BC เป็นการเดินทางของแสงในตัวกลางที่มีค่าดัชนีการหักเหน้อยกว่า ดังนั้นในระยะเวลาเท่ากันแสงจะสามารถเดินทางได้มากกว่า

» การสะท้อนกลับหมด (Total Internal Reflection)
การเกิดการสะท้อนกลับหมดของแสงจะเกิดขึ้นได้ก็ต่อเมื่อค่าดัชนีการหักเหของตัวกลางที่ 1 มีค่ามากกว่าดัชนีการหักเหของตัวกลางที่ 2 (n1 > n2) และ ซึ่งจะส่งผลให้ มีค่าเท่ากับ หรือมากกว่าโดยเราสามารถหาค่า ได้จาก Snell's Law เมื่อ จะเกิดการสะท้อนกลับหมดของแสงซึ่งจะได้ ดังนั้น
ดังนั้นจะได้


รูปที่ 2.7 การสะท้อนกลับหมดของแสง

ในรูปที่ 2.8 แสดงตัวอย่างของการสะท้อนกลับหมดของแสง โดยการมองเครื่องบินที่อยู่ในอากาศจากใต้น้ำ ซึ่งจะสามารถมองเห็นเครื่องบินได้ก็ต่อเมื่อเรามองทำมุมกับผิวน้ำมากกว่า ค่าดังกล่าวได้มาจากการคำนวณมุมวิกฤตดังนี้

รูปที่ 2.8 ตัวอย่างการสะท้อนกลับหมดของแสง

จากสมการ แทนค่า n2=1 และ n1=1.33 จะได้

ดังนั้นการมองจะต้องทำมุมกับเส้นปกติน้อยกว่า จึงจะสามารถมองเห็นเครื่องบินได้ ถ้าเรามองทำมุมกับเส้นปกติเท่ากับหรือมากกว่า จะทำให้เกิดการสะท้อนกลับหมดของแสงจึงไม่สามารถมองเห็นเครื่องบินได้ ซึ่งปรากฏการณ์การสะท้อนกลับหมดของแสงนี้จะทำให้แสงสามารถเดินทางไปในเส้นใยแสงได้

การกระจาย
ในการพิจารณาการเดินทางของแสงที่ผ่านๆ มา เราสมมติให้แสงที่เดินทางมีความยาวคลื่นเพียงความยาวคลื่นเดียวซึ่งเราเรียกแสงชนิดนี้ว่า "Monochromatic" แต่โดยธรรมชาติของแสงแล้วจะประกอบด้วยความยาวคลื่นหลายความยาวคลื่นผสมกัน ซึ่งเราเรียกว่า "Polychromatic" ดังแสดงในรูปที่ 2.9 จะเห็นว่าแสงสีขาวจะสามารถแยกออกเป็นแสงสีต่างๆ (ความยาวคลื่นต่างๆ) ได้ถึง 6 ความยาวคลื่นโดยใช้แท่งแก้วปริซึม ซึ่งกระบวนการที่เกิดการแยกแสงออกแสงออกมานี้ เราเรียกว่า "การกระจาย (Dispersion)"

การกระจายของแสงนี้จะตั้งอยู่บนความจริงที่ว่า "แสงที่มีความยาวคลื่นต่างกันจะเดินทางด้วยความเร็วที่ต่างกันในตัวกลางเดียวกัน"
นอกจากคุณสมบัติดังกล่าวทั้ง 4 ข้อแล้ว แสงยังมีคุณสมบัติอื่นๆ อีกคือ
1. แสงจัดเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic wave) ชนิดหนึ่ง
2. คลื่นแสงเป็นคลื่นมี่มีการเปลี่ยนแปลงตามขวาง (Transverse wave)
ซึ่งทั้ง 2 กรณีนี้ ทำให้เราสามารถสรุปได้ว่าคลื่นแสงเป็นคลื่น TEM
เป็นคลื่น TEM โดยลักษณะการเดินทางของแสงแสดงในรูปที่ 2.10

รูปที่ 2.10 การเดินทางของคลื่นแสง

วันพฤหัสบดีที่ 6 สิงหาคม พ.ศ. 2552

กล้องจุลทรรศน์



กล้องจุลทรรศน์ (Microscope)
กล้องจุลทรรศน์เป็นอุปกรณ์ที่ช่วยให้เรามองเห็นวัตถุที่มีขนาดเล็กมาก ประกอบด้วยเลนส์นูนความยาวโฟกัสสั้น ๆ 2 อัน โดยเลนส์อันหนึ่งอยู่ใกล้วัตถุเรียกว่าเลนส์ใกล้วัตถุ (Objective Lens) และเลนส์อันหนึ่งอยู่ใกล้ตาเรียกว่าเลนส์ใกล้ตา (Eyepiece Lens) โดยความยาวโฟกัสของเลนส์ใกล้วัตถุน้อยกว่าความยาวโฟกัสของเลนส์ใกล้ตามาก


วางวัตถุไว้ในระหว่าง ของเลนส์ใกล้วัตถุ จะได้ภาพจริงขนาดขยายอยู่หน้าเลนส์ใกล้ตาโดยจะเป็นวัตถุเสมือนของเลนส์ใกล้ตา โดยวัตถุเสมือนนี้ จะต้องอยู่ระหว่างความยาวโฟกัสของเลนส์ใกล้วัตถุกับเลนส์ เกิดภาพเสมือนขนาดขยายที่ระยะที่เห็นชัดปกติของตา คือประมาณ 25 เซนติเมตร โดยในทาง ปฏิบัติวิธีทำให้เห็นภาพชัดเรียกว่าการโฟกัสภาพทำได้โดยเลื่อนเลนส์ใกล้ตาเพื่อปรับระยะวัตถุให้เหมาะสมที่จะเกิดภาพที่ระยะเห็นได้ชัดเจน


ชนิดของกล้องจุลทรรศน์


กล้องจุลทรรศน์สามารถแบ่งออกเป็นประเภทใหญ่ๆได้ 2 ประเภท คือ กล้องจุลทรรศน์แบบแสง (Optical microscopes) และกล้องจุลทรรศน์อิเล็กตรอน((((Electron microscopes))))

กล้องจุลทรรศน์ชนิดที่พบได้มากที่สุด คือชนิดที่ประดิษฐ์ขึ้นเป็นครั้งแรก เรียกว่า กล้องจุลทรรศน์แบบใช้แสง (optical microscope) เป็นอุปกรณ์ใช้แสงอย่างหนึ่ง มีเลนส์อย่างน้อย 1 ชิ้น เพื่อทำการขยายภาพวัตถุที่วางในระนาบโฟกัสของเลนส์นั้นๆ


กล้องจุลทรรศน์แบบใช้แสง


1.Light microscope เป็นกล้องจุลทรรศน์ที่พบอยู่ทั่วไป โดยเวลาส่องดูจะเห็นพื้นหลังเป็นสีขาว และจะเห็นเชื้อจุลินทรีย์มีสีเข้มกว่า
2.Dark field microscoe เป็นกล้องจุลทรรศน์ที่มีพื้นหลังเป็นสีดำ เห็นเชื้อจุลินทรีย์สว่าง เหมาะสำหรับใช้ส่องจุลินทรีย์ที่มีขนาดเล็ก ที่ติดสียาก
3.Phase contrast microscope ใช้สำหรับส่องเชื้อจุลินทรีย์ที่ยังไม่ได้ทำการย้อมสี จะเห็นชัดเจนกว่า Light microscope
4.Fluorescence microscope ใช้แหล่งกำเนิดแสงเป็น อัลตราไวโอเลต ส่องดูจุลินทรีย์ที่ย้อมด้วยสารเรืองแสง ซึ่งเมื่อกระทบกับแสง UV จะเปลี่ยนเป็นแสงช่วงที่มองเห็นได้ แล้วแต่ชนิดของสารที่ใช้ พื้นหลังมักมีสีดำ


กล้องจุลทรรศน์อิเล็กตรอน


กล้องจุลทรรศน์อิเล็กตรอน (Electron microscope) เป็นกล้องจุลทรรศน์ที่มีกำลังการขยายสูงมาก เพราะใช้ลำแสงอิเล็กตรอนแทนแสงปกติและใช้สนามแม่เหล็กไฟฟ้าแทนเลนส์แก้ว เป็นกล้องที่ใช้ในการศึกษาโครงสร้าง และส่วนประกอบของเซลล์ ได้อย่างละเอียด ที่กล้องชนิดอื่นไม่สามารถทำได้



ส่วนประกอบของกล้องจุลทรรศน์


1. ฐาน (Base) เป็นส่วนที่ใช้วางบนโต๊ะ ทำหน้าที่รับน้ำหนักทั้งหมดของกล้องจุลทรรศน์ มีรูปร่างสี่เหลี่ยม หรือวงกลม ที่ฐานจะมีปุ่มสำหรับปิดเปิดไฟฟ้า
2. แขน (Arm) เป็นส่วนเชื่อมตัวลำกล้องกับฐาน ใช้เป็นที่จับเวลาเคลื่อนย้ายกล้องจุลทรรศน์
3. ลำกล้อง (Body tube) เป็นส่วนที่ปลายด้านบนมีเลนส์ตา ส่วนปลายด้านล่างติดกับเลนส์วัตถุ ซึ่งติดกับแผ่นหมุนได้ เพื่อเปลี่ยนเลนส์ขนาดต่าง ๆ ติดอยู่กับจานหมุนที่เรียกว่า Revolving Nosepiece
4. ปุ่มปรับภาพหยาบ (Coarse adjustment) ทำหน้าที่ปรับภาพโดยเปลี่ยนระยะโฟกัสของเลนส์ใกล้วัตถุ (เลื่อนลำกล้องหรือแท่นวางวัตถุขึ้นลง) เพื่อทำให้เห็นภาพชัดเจน
5. ปุ่มปรับภาพละเอียด (Fine adjustment) ทำหน้าที่ปรับภาพ ทำให้ได้ภาพที่ชัดเจนมากขึ้น
6. เลนส์ใกล้วัตถุ (Objective lens) เป็นเลนส์ที่อยู่ใกล้กับแผ่นสไลด์ หรือวัตถุ ปกติติดกับแป้นวงกลมซึ่งมีประมาณ 3-4 อัน แต่ละอันมีกำลังบอกเอาไว้ เช่น x3.2, x4, x10, x40 และ x100 เป็นต้น ภาพที่เกิดจากเลนส์ใกล้วัตถุเป็นภาพจริงหัวกลับ
7. เลนส์ใกล้ตา (Eye piece) เป็นเลนส์ที่อยู่บนสุดของลำกล้อง โดยทั่งไปมีกำลังขยาย 10x หรือ 15x ทำหน้าที่ขยายภาพที่ได้จากเลนส์ใกล้วัตถุให้มีขนาดใหญ่ขึ้น ทำให้เกิดภาพที่ตาผู้ศึกษาสามารถมองเห็นได้ โดยภาพที่ได้เป็นภาพเสมือนหัวกลับ
8. เลนส์รวมแสง (Condenser) ทำหน้าที่รวมแสงให้เข้มขึ้นเพื่อส่งไปยังวัตถุที่ต้องการศึกษา
9. กระจกเงา (Mirror) ทำหน้าที่สะท้อนแสงจากธรรมชาติหรือแสงจากหลอดไฟภายในห้องให้ส่องผ่านวัตถุโดยทั่วไปกระจกเงามี 2 ด้าน ด้านหนึ่งเป็นกระจกเงาเว้า อีกด้านเป็นกระจกเงาระนาบ สำหรับกล้องรุ่นใหม่จะใช้หลอดไฟเป็นแหล่งกำเนิดแสง ซึ่งสะดวกและชัดเจนกว่า
10. ไดอะแฟรม (Diaphragm) อยู่ใต้เลนส์รวมแสงทำหน้าที่ปรับปริมาณแสงให้เข้าสู่เลนส์ในปริมาณที่ต้องการ
11. แท่นวางวัตถุ (Speciment stage) เป็นแท่นใช้วางแผ่นสไลด์ที่ต้องการศึกษา
12. ที่หนีบสไลด์ (Stage clip) ใช้หนีบสไลด์ให้ติดอยู่กับแท่นวางวัตถุ ในกล้องรุ่นใหม่จะมี Mechanical stage แทนเพื่อควบคุมการเลื่อนสไลด์ให้สะดวกยิ่งขึ้น
13. แท่นวางวัตถุ (Stage) เป็นแท่นสำหรับวางสไลด์ตัวอย่างที่ต้องการศึกษา มีลักษณะเป็นแท่นสี่เหลี่ยม หรือวงกลมตรงกลางมีรูให้แสงจากหลอดไฟส่องผ่านวัตถุแท่นนี้สามารถเลื่อนขึ้นลงได้ด้านในของแท่นวางวัตถุจะมีคริปสำหรับยึดสไลด์และมีอุปกรณ์ช่วยในการเลื่อนสไลด์ เรียกว่า Mechanical Stage นอกจากนี้ยังมีสเกลบอกตำแหน่งของสไลด์บนแทนวางวัตถุ ทำให้สามารถบอกตำแหน่งของภาพบนสไลด์ได้